A method for assessing heterogeneity of blood flow and metabolism in exercising normal human muscle by near-infrared spectroscopy.
نویسندگان
چکیده
Heterogeneity in the distribution of both blood flow (Q̇) and O2 consumption (V̇O2) has not been assessed by near-infrared spectroscopy in exercising normal human muscle. We used near-infrared spectroscopy to measure the regional distribution of Q̇ and V̇O2 in six trained cyclists at rest and during constant-load exercise (unloaded pedaling, 20%, 50%, and 80% of peak Watts) in both normoxia and hypoxia (inspired O2 fraction = 0.12). Over six optodes over the upper, middle, and lower vastus lateralis, we recorded 1) indocyanine green dye inflow after intravenous injection to measure Q̇; and 2) fractional tissue O2 saturation (StiO2) to estimate local V̇O2-to-Q̇ ratios (V̇o2/Q̇). Varying both exercise intensity and inspired O2 fraction provided a (directly measured) femoral venous O2 saturation range from about 10 to 70%, and a correspondingly wide range in StiO2. Mean Q̇-weighted StiO2 over the six optodes related linearly to femoral venous O2 saturation in each subject. We used this relationship to compute local muscle venous blood O2 saturation from StiO2 recorded at each optode, from which local V̇O2/Q̇ could be calculated by the Fick principle. Multiplying regional V̇O2/Q̇ by Q̇ yielded the corresponding local V̇O2. While six optodes along only in one muscle may not fully capture the extent of heterogeneity, relative dispersion of both Q̇ and V̇O2 was ∼0.4 under all conditions, while that for V̇O2/Q̇ was minimal (only ∼0.1), indicating in fit young subjects 1) a strong capacity to regulate Q̇ according to regional metabolic need; and 2) a likely minimal impact of heterogeneity on muscle O2 availability.
منابع مشابه
Noninvasive assessment of sympathetic vasoconstriction in human and rodent skeletal muscle using near-infrared spectroscopy and Doppler ultrasound.
The precise role of the sympathetic nervous system in the regulation of skeletal muscle blood flow during exercise has been challenging to define in humans, partly because of the limited techniques available for measuring blood flow in active muscle. Recent studies using near-infrared (NIR) spectroscopy to measure changes in tissue oxygenation have provided an alternative method to evaluate vas...
متن کاملA new method to measure local oxygen consumption in human skeletal muscle during dynamic exercise using near-infrared spectroscopy.
Near infrared spectroscopy (NIRS) can readily report on changes in blood volume and oxygenation. However, it has proved more problematic to measure real-time changes in blood flow and oxygen consumption. Here we report the development of a novel method using NIRS to measure local oxygen consumption in human muscle. The method utilizes the blood volume changes induced by the muscle pump during r...
متن کاملMuscle metabolism with blood flow restriction in chronic fatigue syndrome.
The purpose of this study was to determine whether chronic fatigue syndrome (CFS) is associated with reduced blood flow and muscle oxidative metabolism. Patients with CFS according to Centers for Disease Control criteria (n = 19) were compared with normal sedentary subjects (n = 11). Muscle blood flow was measured in the femoral artery with Doppler ultrasound after exercise. Muscle metabolism w...
متن کاملNoninvasive optical quantification of absolute blood flow, blood oxygenation, and oxygen consumption rate in exercising skeletal muscle.
This study investigates a method using novel hybrid diffuse optical spectroscopies [near-infrared spectroscopy (NIRS) and diffuse correlation spectroscopy (DCS)] to obtain continuous, noninvasive measurement of absolute blood flow (BF), blood oxygenation, and oxygen consumption rate (V̇O(2)) in exercising skeletal muscle. Healthy subjects (n=9) performed a handgrip exercise to increase BF and V̇O...
متن کاملDetermining Blood Glucose Concentration using Near Infrared Spectroscopy: Early Findings
Introduction: Diabetes mellitus is one of the diseases that have grown dramatically in today's societies. People with diabetes should continuously measure their blood glucose level. Continuous blood glucose measurement by commonly used methods is painful and difficult. On the other hand, mobile phone can be a useful tool for accessing physicians and telemedicine services more easily. The aim of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 118 6 شماره
صفحات -
تاریخ انتشار 2015